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Model Description

Discrete dynamics. The discrete dynamics of the model capture
instantaneous changes in the state of the system. One such
change is the transition of an origin from the prereplicative to the
postreplicative state. An origin is called prereplicative at the
beginning of S-phase, when it is ready to fire and becomes
postreplicative either when it fires or when it is passively
replicated by a replication fork from an adjacent origin. Al-
though in reality this transition takes some time, it is much faster
than the rest of the dynamics of the system (e.g., the movement
of the replication forks) and can therefore be accurately ab-
stracted by an instantaneous switch that takes place when either
the origin fires, or when a replication fork of an adjacent origin
reaches it.

For logistical reasons, the distinction between pre- and pos-
treplicative state needs to be refined further in our model. In
particular, we need to distinguish whether the postreplicative
state is reached because the origin fired or because it was
passively replicated. After an origin has fired, we also need to
distinguish cases where both its replication forks are active, from
cases where only the right fork is active (because the left fork
encountered the right replication fork of another active origin to
the left of the origin in question), from cases where only the left
fork is active (for the symmetric reason), from cases where
neither fork is active. The discrete state of each origin, i, can be
captured by a variable, S;, that takes one of six values,

S; € {PreR, RB, RR, LR, PostR, PassR}.

Initially all origins are in the prereplicative state, therefore S; =
PreR foralli = 1, 2, ..., N. The transition from PreR to RB is
“spontaneous” and takes place when the origin “decides” that
the time to fire has come. In our model, the timing of this
transition is probabilistic; the mechanism driving it is described
under the paragraph Stochastic Dynamics below. The remaining
transitions are “forced,” in the sense that they have to take place
when certain conditions on the movement of the replication
forks are met. For example, the transition of an origin i from
PreR to PassR (that represents passive replication) takes place
when either the left replication fork of the first active origin to
the right of 7, or the right replication fork of the first active origin
to the left of i reaches the position, X;, of i. States RB, LR and
RR are used to discriminate origins from which active forks
emanate to both directions (RB), only to the left (LR) or only to
the right (RR) due to encountering a fork progressing from the
opposite direction (fork conversion). In the conventional licens-
ing terminology, PassR, PostR, RB, RR, and LR are subdivisions
of the postreplicative state. Transitions between states are
governed by “guards” (listed next to the arrow that represents
the corresponding transition in Fig. 1 of the main text). The
guards are logical statements involving the variables of the
model. When the statement becomes true the corresponding
transition is taken.

The guards make use of the right and left neighbors of a given
origin, i.e., origins to the left and to the right that are actively
replicating at this instant

LN(G) = max{j <i|S;¢{PreR, PostR, PassR}}
RN(i) = min{j > i|S;¢{PreR, PostR, PassR}}
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The guard for the transition from PreR to PassR can then be
succinctly written as

Gprer—passk = [Xine + Rone = X/ [Xeve) — Leve = X3,

where Ry ) and Lryg) denote the progress of the right and left
replication forks (respectively) of these neighboring origins, and
\/ denotes “or.” The remaining transition guards are

Gre—rr = [Xine T Roveo =X — L]
Gprer—rs = [t = T}]

Grp—rr = [Xnne) — Lrve = Xi + R
Grr—rosir = GrB—LR

Grr—rosir = GrB—RR

The guard Gp,.r—rp reflects the probabilistic transition that
takes place when origin i fires; ¢ denotes the current time and 7;
the random origin firing time, whose probability distribution is
discussed below.

Continuous dynamics. The continuous dynamics of the model
capture evolutions that are slow compared to the discrete
transitions discussed above and can therefore be considered as
taking place continuously over a time interval. In our model the
only such evolution is the movement of the replication forks. The
progress of the replication forks is measured in terms of the
number of bases replicated. Even though this number is finite by
nature, it is very large and it is therefore reasonably accurate to
capture the progress of the replication fork by a continuous
quantity that changes according to a differential equation. The
rationale behind this approximation becomes clearer if we
consider normalizing the number of replicated bases by the total
number of bases, L, (which is more than 12 million for S. pombe)
and looking at the resulting number, which will be between 0 and
1 (reflecting the fraction of the genome that has been repli-
cated).

When origin i fires it gives rise to two replication forks moving
away from the origin to the left and to the right. We denote by
L; and R; the number of bases that these forks have replicated
respectively. The forks move (i.e., L; and R; increase) at a
velocity v(x) which depends on the position, x, of the genome
currently being replicated by the fork. The progress of the forks
stops when they encounter replication forks moving in the
opposite direction (reflected in the discrete state of the model).
The progress of the replication forks can therefore be captured
by two differential equations

dRi(1) {V(Xi+ Ri(t)) ifSi(t) € {RB,RR}
dt |0 otherwise

dLi(t) {V(Xi— Li(t)) ifSi(t) € {RB,LR}
dt |0 otherwise

Clearly, the moment origin / fires the number of bases its forks
have replicated is zero, therefore we initialize the differential
equations with L;(0) = R;(0) = 0. Notice that there is a tight
coupling between the discrete and continuous states of the
process: The transitions of the discrete state depend on the value
of the continuous state and the evolution of the continuous state
depends on the value of the discrete state. This tight coupling of
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the continuous and the discrete is the defining feature of hybrid
systems.

Stochastic dynamics. In our model we assume that, in the absence
of passive replication, the firing time, 7; (in minutes), of origin
i is governed by an exponential distribution. More specifically, we
assume that in the absence of passive replication the probability
that origin i has not fired by time ¢ (in minutes) decreases
exponentially in ¢:

Probability[T; = ] = e M.

Recall that the positive number A; reflects the firing propensity
of origin i in a unit of time in the absence of passive replication.
The exponential distribution offers theoretical and practical
advantages and is widely used in many applications, among them
telecommunication networks, manufacturing, insurance, and
finance. For example, the exponential distribution is memory-
less. Moreover, the parameter A; may in general depend on the
discrete state of the model (e.g., the number of origins that are
prereplicative) and/or the continuous state (e.g., the fraction of
unreplicated DNA). This observation is exploited below for the
development and simulation of the firing propensity redistribu-
tion model.

The parameter A; for each origin needs to be selected based
on experimental data. To do this we use the fraction of cells, FP;,
in which origin i was observed to fire in hydroxyurea experi-
ments, where replication forks are halted after moving only for
a few thousand bases, thus preventing passive replication. It is
easy to see that under the exponential distribution and in the
absence of passive replication the probability that origin i fires
by a given time Ty (in minutes) is given by

T
Ne Ndt=1—e NI,
0

If we equate this number to FP; we can obtain an estimate of the
intrinsic firing propensity, A;, of origin i as a function of the
experimentally observed fraction FP;

1
/\[' = _?fln(l _FPI').

Clearly there is some arbitrariness involved in the choice of T}.
Initially we set Ty = 20 minutes to reflect the generally accepted
view that the S-phase for S pombe lasts about 20 min. The
sensitivity of the results with respect to this choice is discussed
in the main body of the paper.

We note two subtle assumptions of our model. The first is that
the firing processes of different origins are assumed to be
statistically independent. The second is that the value of A; is
assumed to be constant during S-phase. This implicitly means
that origin efficiency (weak vs. strong) and origin firing time
(early vs. late) both boil down to the same mechanism; strong
origins will also tend to fire early and weak origins will tend to
fire late. The reason is that the mean of the exponential
distribution is 1/A;. Therefore, a high value of A; implies that, in
the absence of passive replication, origin i will tend to fire both
more often and earlier. In the presence of passive replication the
correlation will not be perfect, of course. An alternative firing
propensity re-distribution model that relaxes both assumptions is
discussed below.

Firing propensity redistribution model. The structure of the firing
propensity redistribution model is the same as that of the basic
model outlined above. The only difference lies in the calculation
of the intrinsic firing propensities which change every time an
origin fires or gets passively replicated. As before, let A; denote
the initial firing propensity of origin i, computed by the method
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discussed in the previous section and let A;(¢) denote the firing
propensity of origin i at time ¢; initially we set A;(0) = A;. Let also

o) ={ilS; = PreR} C {1,2,...,N}

denote the set of indices of the origins in the preprelicative state
at time ¢#; initially we set Q(0) = {1, 2, ..., N}. Assume that at
some time, ¢, origin i either fires, or becomes passively replicated.
At this time, the index i is dropped from the set Q(¢), and the
firing propensity of origin i is redistributed among the origins
remaining in Q(¢). We assume that the redistribution is propor-
tional to the initial firing propensity of the remaining prerepli-
cative origins, in other words

Q1) = Q@) — {i} and

Xj(t) = )_\j(tf) + A7) ﬁ for allj € Q(¢)
kEQ[)

where ¢~ denotes the time just before the discrete transition
(firing or passive replication) takes place; more formally,
Q(t7) = lim, », Q(7). It is easy to see that in this case the firing
propensity of individual origins increases monotonically along
the S-phase, while the total firing propensity remains constant

NOEEIPYOEDIPY

i€0() i=1

Two alternative redistribution models were also implemented.
The first alternative is the same as above, with the exception that
redistribution takes place according to the current firing pro-
pensity of the PreR origins and not their initial firing propensity.
In other words

- - - )_\j(lﬁ) .
M) = M) + At )W forallj € Q1)

kEO()

For this first alternative redistribution model the total firing
propensity also remains constant.

The second alternative redistribution model captures the
situation where redistribution takes place upon fork conversion
and not upon firing. In this case, redistribution takes place either
when origin i is passively replicated (transition PreR to PassR) or
when forks meet (transitions RB to RR, RB to LR, RR to PostR,
or LR to PostR). In both cases, the computation of Q(¢) proceeds
as before. In the former case all of the firing propensity A;(t7)
gets redistributed among origins in Q(#) proportionately to their
initial firing propensities. In the latter case, one half of the firing
propensity A;(¢7)/2 gets redistributed. One can see that in this
case the total firing propensity will not be exactly constant, since
origins in the RB, RR, and LR states are not in Q(¢) but still hold
on to (part of) their firing propensity.

In all cases, the parameters used in the results [L, N, T, v(x)]
were the same as for the base case of the original model.
Fission yeast instantiation: Modeled genome areas and input parameters.
The locations and intrinsic firing propensities of origins along the
fission yeast genome were taken from (Heichinger et al., 2006).
The genome sequence release of the fission yeast genome of
April 2004 from the Sanger Center was used. Highly repetitive
regions of the fission yeast genome were excluded from the
origin mapping analysis and were therefore also excluded from
simulations. These are telomeric and subtelomeric repeats,
centromeric and subcentromeric repeats, and ribosomal RNA
repeats. The left and right arms of chromosomes 2 and 3 were
modeled as separate pieces to avoid artifacts from artificially
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joining them following extraction of centromeric regions. Chro-
mosome 1 was modeled as one piece, since the length of the
unmapped centromeric region was ~15 kb, which is no different
from the mean inter-origin distance. DNA replication was
modeled for a total area of L = 12,039,987 bases containing N =
893 potential origins. Specifically the modeled regions were:

- Chromosome 1: base 90,532 to 5,494,088. 5.4 Mb containing
408 origins

- Chromosome 2-Left arm: base 95,383 to 1,592,054. 1.5 Mb
containing 105 origins.

- Chromosome 2-Right arm: base 1,649,764 to 4,426,827. 2.8
Mb containing 207 origins.

- Chromosome 3-Left arm: base 33,072 to 1,065,271. 1 Mb
containing 83 origins.

- Chromosome 3-Right arm: base 1,144,065 to 2,431,896. 1.4
Mb containing 90 origins.

Location and intrinsic firing propensities of origins used as
model input are shown in supporting information (SI) Table S1.

To specify the locations of additional putative origins, a
bioinformatics analysis of the properties of all known fission
yeast origins was carried out. Consistent with previous analyses,
mapped fission yeast origins were shown to localize to intergenic
regions which were over 500 bp in length. The maximum AT
content of 500 bp windows within each intergenic region was
shown to be a good predictor of origin activity. A moving AT
content threshold was therefore used to progressively increase
the number of intergenic regions that were included as weak
origins.
Hardware and software. The model was implemented in Matlab
2006b on a dual core (2 X 1,83GHz) computer with 2048MB of
RAM. The results are generally based on 2,000 Monte-Carlo
runs. To keep the memory requirements manageable, continu-
ous states were added as they became necessary and dropped
after they ceased being active. Forced transitions (all except the
transition from PreR to RB) were simulated by the event
detection facilities of the ode45 Matlab routine used to integrate
the continuous dynamics. The spontaneous, probabilistic tran-
sition from PreR to RB was simulated by extracting a random
variable uniformly in the unit interval, taking its logarithm,
dividing by — A;, and waiting for the simulation time to reach the
resulting value. The probability distribution for the time at which
this happens obeys the exponential distribution with rate A;.
Simulation and diagnostics. A simple calculation suggests that, even
though the model used to capture the behavior of individual
origins is relatively simple, the resulting genome-wide model can
be very complex. The number of discrete states and the dimen-
sion of the continuous state space can be very large, with up to
2N continuous states and 6V discrete states being activated, with
N = 893 for the fission yeast genome. While only a fraction of
these states will be visited in any one execution of the model, the
analysis and even the simulation of such a model can be a
formidable task. In the implementation of our model for com-

1. Heichinger C, Penkett CJ, Bahler J, Nurse P (2006) EMBO J 25:5171-9.
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puter simulation special care had to be taken to ensure that the
simulations were faithful to the model and simulation time and
memory requirements were kept reasonable.

Fig. S1 shows examples of simulations that represent full
genome replication in individual cells for the basic model. In Fig.
S1A, the replication process in a specific region of the genome,
containing 11 origins, is depicted for two simulations (C; and
C;). The stochastic nature of the process is evident in the
different location of active origins in each simulation, the
different timing of firing of each origin and the different total
time required to complete replication of this genomic region. In
Fig. S1B, the replication time of each position x along a second
genomic region is shown for four simulations. The stochasticity
of the replication process is evident.

To ensure that the programming code accurately captures the
model dynamics, two separate implementations were generated.
The first was based on a continuous time simulation of the
differential equations governing the evolution of the continuous
state, coupled with event detection to simulate the evolution of
the discrete state. The second implementation is based on an
explicit algebraic solution of the differential equations, followed
by a discrete time simulation from one discrete event to the next.
The former implementation is more general but also more
computationally demanding, while the latter only applies to cases
where the fork speed is constant, but can be considerably faster.
Both implementations were tested on the fission yeast instan-
tiation discussed here and produced identical results (albeit at a
different computational cost). This is a clear indication that both
computational implementations indeed capture the dynamics of
the mathematical model correctly.

Next, to ensure that the model dynamics correctly capture our
current understanding of the DNA replication process, several
tests were carried out using the two computational implemen-
tations. The simulation tests showed the following properties:

1. The fraction of unreplicated DNA always starts at 1 and
decays monotonically to 0.

2. The total amount of DNA in the nucleus starts with 1
genome length and monotonically increases to 2 genome lengths.

3. All parts of the genome (at inter-putative origin granularity)
started with one copy and ended with two.

4. All origins started in the PreR state and ended up either in
the PostR state or in the PassR state. Further, the number of PreR
origins was monotone decreasing while the number of PostR and
PassR origins was monotone increasing.

5. The number of RR origins was always (roughly) equal to the
number of LR origins. Small differences are due to origins near
the edges of the chromosome pieces completing the replication
to the end of the piece.

Fig. S2 demonstrates these properties for two runs of the
model, one for the base-case model (without redistribution, left
column) and one for the firing propensity redistribution model
(right column).
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Fig.S1. Example simulation runs of DNA replication across the fission yeast genome. (A) Snapshots of a “movie” of two simulations of the replication process
in a given piece of the genome containing 11 putative origins. For each snapshot the bar at the top shows the locations of potential origins, the two bars labeled
C; and C; show the two simulations, and the time corresponding to the snapshot is listed in the bottom; origins that have fired in the simulations are marked
by a vertical line and the replicated pieces of the DNA by a thick horizontal line. Stochastic phenomena in the location of active origins and timing of firing are
evident. As a consequence, the time required to complete replication of this region differs between simulations (10 min for C; verus 13 min for C). (B) Results
of 4 different simulations a 40-kb piece of the genome containing 5 putative origins, showing the time of replication of each genomic region. Locations of
potential origins are marked at the top, the horizontal axis represents location in the genome and the vertical axis the time at which each location was replicated
in the particular simulation. Differences in the timing profile in different simulations are evident.
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Fig. S2. Properties of base-case and firing propensity redistribution model. (A, C, and E) Base case model, (B, D, and F) Firing propensity redistribution model.
(A) and (B) show the total system firing propensity (the sum of the firing propensities of origins available to fire, in blue) and the mean firing propensity of origins
available to fire (in green) during the course of S-phase. Note that the total system firing propensity decreases during the course of S-phase for the base-case
model and remains constant for the firing propensity redistribution model. In contrast, the firing propensity of a given origin remains constant in the base case
model and increases in the redistribution model. The mean firing propensity tends to decrease somewhat in the base model, as more efficient origins tend to
fire earlier. (C) and (D) show the number of origins that are found in each one of the six discrete states during the course of S-phase. PreR red, PassR purple, RB
light blue, RL dark blue RR black, and PassR yellow. Note that the RL and RR curves effectively overlap and that for both models, the majority of origins are
passively replicated. (E) and (F) show the number of inter-origin locations which have one copy (black line) or two copies (red line) during the course of S-phase.
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